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Fig. 1. We optimize the initial velocities of straight rods (top row), such that after a few simulation frames they spell “SIGGRAPH”. Our approach based on Lie
derivatives of rotations converges in just 1m 21s, 4.8× faster than a formulation based on rotation vectors.

We propose the formulation of forward and differentiable rigid-body dy-
namics using Lie-algebra rotation derivatives. In particular, we show how
this approach can easily be applied to incremental-potential formulations
of forward dymamics, and we introduce a novel definition of adjoints for
differentiable dynamics. In contrast to other parameterizations of rotations
(notably the popular rotation-vector parameterization), our approach leads to
painlessly simple and compact derivatives, better conditioning, and higher
runtime efficiency. We demonstrate our approach on fundamental rigid-
body problems, but also on Cosserat rods as an example of multi-rigid-body
dynamics.
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1 INTRODUCTION
It is well known that the nonlinear nature of the space of rotations
imposes intrinsic complexity in the representation and computation
of rigid-bodymotion. Unlike translations, which are straightforward
to handle in a Euclidean space, rotations are described by the special
orthogonal group 𝑆𝑂 (3). Rotations admit many representations, but
all come with challenges. Euler angles suffer singularities; rotation
matrices require orthogonality and unit determinant; quaternions
require normalization. These challenges become more severe when
functions must be differentiated in the space of rotations 𝑆𝑂 (3).
While rotations are linear (resp. quadratic) operations with respect
to rotation matrices (resp. quaternions), and apparently easy to
differentiate, derivatives must also be constrained, and quantities
computed in the differential domain cannot simply be added, due to
the nonlinear nature of 𝑆𝑂 (3).

Rotation vectors (a.k.a. axis-angle) have gained popularity in re-
cent years in computer graphics. The reason is simple: rotation
vectors are parameterized in IR3, and do not require additional con-
straints to maintain validity. Quantities computed in differential
rotation-vector space can simply be added together and still de-
fine new valid rotations through the exponential map, which is
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compactly computed using the Rodrigues rotation formula. Unfortu-
nately, the nonlinearity of the Rodrigues formula leads to “derivative
hell”. We invite the reader to look at details in appendices and supple-
mentary material of high-impact works on both forward dynamics
(notably Rigid IPC [Ferguson et al. 2021]) and differentiable dynam-
ics (notably ADD [Geilinger et al. 2020]). Authors often rely on
automatic differentiation, but at the expense of computational cost
and special Taylor approximations to handle indeterminate forms.
Interestingly, differentiation of rotations and with respect to ro-

tations can be easily handled with a tool largely overlooked in
computer graphics: Lie theory. Admittedly, there are notable ex-
ceptions which have successfully used Lie theory for simulation in
computer graphics, e.g., [Kobilarov et al. 2009; Soliman et al. 2024].
The fundamental realization is that differentiation of rotations can
be carried out on a local vector tangent space of 𝑆𝑂 (3). Differential
quantities are not rotations in themselves, but can easily be con-
verted to rotations through the exponential map and then composed
with other rotations. In Section 3 we summarize the fundamentals
of Lie-algebra rotation derivatives, and we explore in contrast the
intrinsic challenges of rotation-vector differentiation.

In this work, wemake two important contributions to forward and
differentiable rigid-body dynamics. First, as described in Section 4,
we detail the application of Lie derivatives to implicit integration of
rigid-body dynamics based on incremental-potential formulations.
We show that the approach produces derivatives (gradients and
Hessians) that are embarrassingly simple in contrast to rotation
vectors.

Our second contribution has its major impact in differentiable
rigid-body dynamics, but stems from a small yet crucial choice in
forward dynamics. State-of-the-art forward simulation methods
formulate the time-step update as the computation of state and
velocity, and this turns into state and velocity adjoints in the context
of differentiable simulation. Instead, we formulate the time-step
update as the computation of state and step (i.e., the state change
between two time steps). Thanks to this apparently simple choice,
both state and step can be represented using rotations, and we fully
unleash the power of Lie derivatives in the computation of state
and step adjoints. As we show in Section 5, this produces again
embarrassingly simple derivatives.
Our Lie-derivative formulations of forward and differentiable

rigid-body dynamics come with several important and fundamen-
tal benefits. (i) Simplicity of derivative functions. Derivatives are
almost as simple as those of state variables defined in Euclidean
space. This allows painless, exact, analytical computation without
indeterminate forms, and it also enhances interpretability. (ii) Bet-
ter numerical conditioning. We avoid conditioning problems and
spurious indefiniteness caused by the rotation-vector parameteriza-
tion. (iii) Computational speed-up. The speed-up arises thanks to a
reduction in solver iteration count, as well as far fewer per-iteration
operations for the computation of derivatives.

In addition to rigid-body simulation, we demonstrate the applica-
tion of our method to Cosserat rod dynamics [Pai 2002; Spillmann
and Teschner 2007]. Cosserat rods serve as example of multi-rigid-
body parameterization of complex kinematics and dynamics. In
Section 6 we discuss the application of our method to Cosserat rods

and, more generally, elastic and damping potentials dependent on
rotations.
We also demonstrate that our method is general and serves all

use-cases of differentiable simulation. We have tested the correct-
ness and performance of the method for the optimization of rest
shape, initial conditions (e.g., Fig. 1), and control forces. In addition,
throughout the paper we compare our formulation to rotation vec-
tors from different perspectives. We analyze basic properties via
eigen-analysis of fundamental derivatives, we compare the complex-
ity of simulation gradients andHessians, andwe compare simulation
convergence and computational cost.
The full implementation of our formulation and all the exam-

ples shown in the paper are available at https://gitlab.com/mslab-
urjc/mandos/-/tree/SIGG25. We believe they evidence the painless
implementation of both forward and differentiable dynamics.

2 RELATED WORK

2.1 Differentiable Simulation
Optimization subject to dynamics is a well-known problem, which
can be formulated in the continuum as a constrained PDE. The
adjoint method [Lions 1971] is a classic and general solution, which
allows an efficient computation of the optimization gradient by
traversing the simulation backwards. The ability to compute simu-
lation gradients wrt optimization parameters has been termed dif-
ferentiable simulation in computer graphics. McNamara et al. [2004]
were the first to apply the adjoint method in computer graphics.
They did so for fluid control, including free-surface liquids. Woj-
tan et al. [2006] studied the application of the adjoint method to
particle systems with implicit integration. For an introduction to
differentiable simulation in computer graphics and an overview of
recent research, we recommend the course by Coros et al. [2021].
For the optimization of initial conditions in rigid-body simulations,
Twigg and James [2008] introduced an interesting alternative based
on backward time-stepping.

Much of the recent work on differentiable simulation has focused
on differentiating complex computational processes of the simula-
tion algorithm. Some examples are continuous collision detection
and complementarity-based contact [Liang et al. 2019], multi-body
dynamics with frictional contact [Geilinger et al. 2020], articulated
bodies [Qiao et al. 2021b], projective dynamics [Du et al. 2021],
soft articulated bodies with projective dynamics [Qiao et al. 2021a],
projective dynamics with dry friction [Li et al. 2022], or extended
position-based dynamics (XPBD) [Stuyck and Chen 2023] among
others. Huang et al. [2024] present a comprehensive differentiable
solver that covers arbitrary optimization arguments, unified treat-
ment of dynamics and static problems, arbitrary temporal and spatial
discretization, and an IPC formulation of general frictional contact.
Our approach to handle rotation derivatives and formulate the step
update for differentiability could complement their method.
The large applicability of differentiable simulation for training

AI controllers (e.g., in robotics) has motivated efforts on fully differ-
entiable simulation engines. One notable example is DiffTaichi [Hu
et al. 2020], which offers a programming language to express differ-
entiable simulation and automatically compile as GPU-parallel code.
A related effort is the combination of differentiable simulation and
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differentiable rendering, to produce a fully differentiable system of
physics-based image generation [Murthy et al. 2021].Warp [Macklin
2022] enables this from Python and at an industry scale, building on
top of massively parallel GPU-based differentiable simulation [Xu
et al. 2022].
Most differentiable simulation algorithms focus on the efficient

and accurate computation of gradients. Then, gradients are used
in a (possibly stochastic) gradient-based optimization method (e.g.
L-BFGS or Adam). There are some exceptions. One is SGN [Zehnder
et al. 2021], which uses Gauss-Newton optimization, and avoids the
assembly and solve of the dense Gauss-Newton matrix by solving in-
stead a sparse saddle-point problem. Another one is X-Shells [Panetta
et al. 2019], which uses full Newton optimization, and computes
Hessian-vector products by solving for adjoint variations wrt pa-
rameter variations.

2.2 Lie Theory
The study and applications of Lie theory go well beyond the scope
of this paper. We largely share the focus of the introductory paper
by Solà et al. [2021], who are interested in Lie theory as a tool for
differentiation with rotations. Other sources cover Lie theory in
more depth and breadth [Howe 1983; Stillwell 2008], but Solà et al.
cover just the sufficient material for our use case.
Lie-group integrators are a particular application of Lie theory

to design variational integrators on kinematic spaces described by
Lie groups [Bou-Rabee and Marsden 2009; Lee et al. 2007]. The
fundamental idea is that derivatives are expressed in a local tangent
space of the Lie group (i.e., the Lie algebra). For rotations, the time
derivative in this local tangent space is nothing else but angular
velocity. See Section 3 for a more detailed discussion of Lie-algebra
derivatives of rotations.
Some notable works in computer graphics have contributed to

Lie-group integration. Kobilarov et al. [2009] designed Lie-group
integrators for systems with general nonholonomic constraints, i.e.,
constraints on time-derivatives of the state. Their detailed derivation
is limited to symplectic Euler, while we address implicit integration
following the incremental-potential optimization formulation [Kane
et al. 2000; Li et al. 2020]. Very recently, Soliman et al. [2024] have
used Lie-group integrators for rigid-body dynamics in incompress-
ible media. We go a step further in using Lie theory to differentiate
functions of rotations in forward and differentiable simulation.

With the general view of differentiable simulation as a constrained
optimization problem, Lie-group integrators have also been used in
the context of optimal control [Kobilarov and Marsden 2011; Lee
et al. 2008]. Our paper brings a fundamental novelty of expressing
step-update constraints as rotations, which allows us to further
leverage Lie theory in the derivation of constraint Jacobians needed
for adjoint computation.

3 LIE-ALGEBRA ROTATION DERIVATIVES

3.1 Lie Group and Lie Algebra
Rotations are the transformations that preserve length, and are
denoted as 𝑆𝑂 (3) in 3D. Rotations form a group because they admit
the operation of composition, i.e., the composition of two rotations
is also a rotation. The identity element of the group is the identity

SO(3)

so(3) ∼= R3

R

θ

Q

ω

exp(ω)

log(R)

I

SO(3)

θR
θQ

exp(θR)R

log(Q+QT )

Q(R+)
R+

Q+

Q
R

Fig. 2. Schematic representation of the Lie group 𝑆𝑂 (3) along with its Lie
algebra 𝔰𝔬 (3) . Left: two rotation vectors 𝜃 and𝜔 and their relationship with
the rotation matrices 𝑅 and𝑄 through the exponential and log maps. Right:
Graphical view of the Lie derivative as defined in equation (2). Note that
𝑆𝑂 (3) is not the surface of a 3D sphere; here we represent it this way for
illustrative purposes.

rotation. Rotations also form a Lie group, because they define a
differentiable manifold. This differentiability property is the essence
of Lie algebra and the formulation of rotation derivatives.
As anticipated in the introduction, rotations admit various rep-

resentations. However, the choice of representation comes with
challenges. Rotation matrices require the constraint of orthogonal-
ity, quaternions require the constraint of normalization, and rotation
vectors are not unique. Following regular calculus, one would com-
pute rotation derivatives using regular derivatives with respect to
the choice of representation, but this is problematic because one
has to enforce constraints on derivatives, or the derivatives are not
well behaved, as we will demonstrate for rotation vectors at the end
of this section.
Lie algebra is a tool for calculus (i.e., for differentiation) of Lie

groups, which defines a robust mechanism for expressing differen-
tiable elements of the group. The Lie algebra of rotations, denoted
𝔰𝔬(3), is the tangent space to 𝑆𝑂 (3) at the identity rotation. The
motivation to define derivatives (i.e., the tangent space) at the iden-
tity element can be seen intuitively as follows. A rotation 𝑅 can be
trivially expressed as the composition of identity and itself, 𝑅 = 𝐼 𝑅.
By taking a differential rotation at identity, 𝐼+, group composition
effectively produces a differential rotation for an arbitrary rotation
𝑅+ = 𝐼+ 𝑅.

The Lie algebra of rotations 𝔰𝔬(3) is formed by the space of skew-
symmetric matrices. We need two additional operations, to map
elements to-from 𝔰𝔬(3) and 𝑆𝑂 (3). These operations are the exp
and log maps. Fig. 2-left depicts the mappings to-from the Lie group
and the Lie algebra.

exp : 𝔰𝔬(3) → 𝑆𝑂 (3) log : 𝑆𝑂 (3) → 𝔰𝔬(3) (1)

A key feature of the Lie algebra is that it is a linear vector space; for
instance, 𝔰𝔬(3) � IR3. Moreover, this vector space has dimensions
equal to the degrees of freedom of the parent manifold. Specifically,
𝔰𝔬(3) can be parameterized using differential rotation vectors: 𝜃 ∈
IR3 → skew(𝜃 ) ∈ 𝔰𝔬(3).
At this point, we gather the four elements necessary for the

definition of Lie derivatives:
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• The definition of derivatives (i.e., the tangent space) at identity
rotations.
• The parameterization of this tangent space using rotation
vectors.
• The mapping from tangent space to full elements using the
exponential map.
• The composition of rotations to define differentials on full
rotaion elements.

3.2 Lie Derivatives
We are interested in the derivatives of functions whose independent
variables represent rotations𝑅 ∈ 𝑆𝑂 (3), and the dependent variables
may represent either vectors 𝑢 ∈ IR𝑛 or other rotations 𝑄 ∈ 𝑆𝑂 (3).
For an independent-variable rotation 𝑅, we define a differential
vector 𝜃𝑅 ∈ IR3, which parameterizes the differential rotation at
identity. Via the exp map and rotation composition, we obtain a
new rotation 𝑅+ = exp(𝜃𝑅) 𝑅 ∈ 𝑆𝑂 (3).
Similarly, for a dependent-variable rotation 𝑄 , we define an-

other differential vector 𝜃𝑄 , and we have a new rotation 𝑄+ =

exp(𝜃𝑄 )𝑄 . Via the log map, we can extract the differential vector
𝜃𝑄 = log(𝑄+𝑄𝑇 ). The Lie derivative D𝑄D𝑅 is nothing else but the
regular vector-calculus derivative 𝜕𝜃𝑄

𝜕𝜃𝑅
evaluated at 𝜃𝑅 = 0. It can

be fully expressed as:

D𝑄
D𝑅 ≡

𝜕𝜃𝑄

𝜕𝜃𝑅
=

𝜕log
(
𝑄 (exp(𝜃𝑅) 𝑅)𝑄 (𝑅)𝑇

)
𝜕𝜃𝑅

�������
𝜃𝑅=0

. (2)

This derivative connects the tangent spaces of 𝑅 and 𝑄 , by map-
ping variations on the tangent space at𝑅 to variations on the tangent
space at 𝑄 . This is depicted in Fig. 2-right.

When the dependent variable is a vector 𝑢, the composition oper-
ation is regular vector summation, and the tangent space represents
the vector space itself. The Lie derivative D𝑢D𝑅 is then nothing else
but the regular vector-calculus derivative 𝜕𝑢

𝜕𝜃𝑅
at 𝜃𝑅 = 0, and we

have:
D𝑢
D𝑅 ≡

𝜕𝑢

𝜕𝜃𝑅
=
𝜕𝑢 (exp(𝜃𝑅) 𝑅)

𝜕𝜃𝑅

����
𝜃𝑅=0

. (3)

Throughout the paper, we make use of Lie derivatives in several
occasions. It is worth making a few observations about how we
obtain those derivatives. For Lie derivatives of rotations, i.e., of
the form D𝑄

D𝑅 , the exponential and log map cancel out after some
operations. For Lie derivatives of vectors, i.e., of the form D𝑢

D𝑅 , it
suffices to approximate the exponential map exp(𝜃𝑅 → 0) with
the degree of the derivative to be computed. Last, we remark that
in our notation we left-multiply by differential rotations, which
conveys that differential rotations are expressed in the world frame.
Alternatively, one could right-multiply by differential rotations,
which conveys that they are expressed in the local frame.

3.3 Comparison with Rotation Vectors
A rotation matrix 𝑅 ∈ 𝑆𝑂 (3) can be parameterized by a rotation
vector 𝑟 ∈ IR3 via the exponential map, 𝑅 = exp(𝑟 ). Using regular
calculus instead of the Lie algebra, any arbitrary function 𝑓 (𝑅(𝑟 ))
can be differentiated using the chain rule as 𝜕𝑓

𝜕𝑟 =
𝜕𝑓

𝜕𝑅
𝜕𝑅
𝜕𝑟 . The
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Fig. 3. Singular values 𝜎1 to 𝜎3 of the Jacobian of the exponential map
𝜕vec(exp(𝑟 ) )

𝜕𝑟
, for angles ∥𝑟 ∥ ∈ [0, 2𝜋 ]. The decrease (and full cancellation

at ∥𝑟 ∥ = 2𝜋 ) of 𝜎2 and 𝜎3 reveals the challenges of rotation vectors.

analysis of 𝜕𝑅𝜕𝑟 reflects the complexity of choosing rotation vectors
when differentiability of rotations is required.

We follow Ferguson et al. [2021] to obtain 𝜕𝑅
𝜕𝑟 . An alternative

is the expression by Gallego and Yezzi [2015], which is used by
Geilinger et al. [2020]. We can write the Rodrigues rotation formula
as (Note that there is a typo in Ferguson’s text):

𝑅(𝑟 ) ≡ exp(𝑟 ) = 𝐼 + 𝜎 (𝑟 ) skew(𝑟 ) + 1
2 𝜎

2
( 𝑟

2

)
skew(𝑟 )2, (4)

where 𝜎 (𝑟 ) = sinc(∥𝑟 ∥), and skew() builds an antisymmetric cross-
product matrix from a vector. We obtain the derivative:
𝜕𝑅

𝜕𝑟
= skew(𝑟 ) 𝜎′ (𝑟 ) 𝑟

∥𝑟 ∥ + 𝜎 (𝑟 ) skew
′ (𝑟 ) (5)

+ 1
2 skew(𝑟 )2 𝜎

( 𝑟
2

)
𝜎′

( 𝑟
2

) 𝑟

∥𝑟 ∥ + 𝜎
2
( 𝑟

2

)
skew(𝑟 ) skew′ (𝑟 ) .

Ferguson et al. provide details to robustly compute sinc′ () as it
becomes indeterminate. skew′ (𝑟 ) is a trivial constant 3D tensor.

𝜕vec(𝑅)
𝜕𝑟 is a rank-3 9×3 matrix. In Fig. 3 we plot its singular values

as a function of the angle of the rotation vector, ∥𝑟 ∥. Note how the
singular values decrease progressively, and 𝜎2 = 𝜎3 even vanish at
∥𝑟 ∥ = 2𝜋 . Based on this result, in all experimental comparisons in
the paper, we express rotation vectors in the range ∥𝑟 ∥ ≤ 𝜋 . The
properties of 𝜕vec(𝑅)𝜕𝑟 explain the complexity of rotation vectors.
Not only are derivatives far more complex, but they also hurt solver
convergence due to poor conditioning as the rotation vector deviates
from 0.

4 FORWARD SIMULATION
Given a framework to compute derivatives with rotations, we wish
to apply this to both forward and backward (differentiable) sim-
ulation of dynamics. To do this, we start by parameterizing both
the state and the step of rotational components of a simulation
by rotation matrices. With such parameterization, we can then
systematically apply Lie derivatives whenever a function must be
differentiated wrt a rotation.
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We continue the section with a recap of optimization time in-
tegration, following the fundamentals of Ferguson et al. [2021]
for rigid-body dynamics, but highlighting differences due to our
rotation-matrix parameterization of state and step. Then we show
how the nonlinear equations of numerical integration are solved
with Newton’s method and Lie derivatives. And we conclude by
discussing analytical and experimental differences wrt a rotation-
vector parameterization.

4.1 State and Step
Let us denote the state of a simulation as 𝑞. We pay attention to
portions of the state describing 3D frames (with position 𝑥 and orien-
tation 𝑅), but the simulation state may also gather particle positions,
FEM nodal discretizations, reduced/subspace representations, etc.
In a forward simulation, state is discretized at time samples, which
yields a sequence of states {𝑞𝑘 }.

Let us also denote the step of a simulation as Δ𝑞, where the step
is the change of state between simulation samples. This also yields
a sequence of steps {Δ𝑞𝑘 }. For 3D frame positions, particles, FEM
discretization nodes, or other Euclidean-space state 𝑥 , the step is
simply the state difference Δ𝑥𝑘 = 𝑥𝑘 −𝑥𝑘−1. For rotations, we define
the step as the incremental rotation between two states:

Δ𝑅𝑘 = 𝑅𝑘 𝑅
𝑇
𝑘−1 . (6)

Without loss of generality, each integration step takes as input
the state and step from the previous time step (𝑞𝑘−1,Δ𝑞𝑘−1), and
yields the new state and step (𝑞𝑘 ,Δ𝑞𝑘 ). A common alternative to
the step is to use velocity or the time-derivative of state. However,
using the step allows us to express all orientation-related kinematics
using rotations, and hence to fully leverage the Lie derivatives from
Section 3. This will utterly simplify the derivation of adjoints, as we
will later see in Section 5.

4.2 Optimization Time Integration
To simulate forward dynamics, we use the optimization formulation
of backward Euler integration based on incremental potentials [Gast
et al. 2015; Kane et al. 2000; Li et al. 2020;Martin et al. 2011]. Note that
this approach can be extended to other integration schemes [Brown
et al. 2018]. The computation of the simulation state𝑞𝑘 is formulated
as the optimization:

𝑞𝑘 = arg minΨ(𝑞𝑘 , 𝑞𝑘−1,Δ𝑞𝑘−1) . (7)
The objective Ψ gathers the potential energy and the incremental-
potential formulations of inertial and dissipative terms [Brown et al.
2018; Ferguson et al. 2021; Li et al. 2020].

Optimality of (7) yields the nonlinear equation system for forward
dynamics:

𝜕Ψ

𝜕𝑞𝑘
= 0. (8)

For rotation components of the state 𝑅𝑘 , the gradient in (8) is the Lie
derivative DΨ

D𝑅𝑘 ≡
𝜕Ψ
𝜕𝜃𝑅𝑘

. Recall from Section 3 that this implies that
rotations are locally parameterized by tangent-space vectors. Then,
the physical meaning of the rotational gradient terms is nothing else
but the torque, and each rotation component of state naturally yields
3 nonlinear equations in (8). This is a general result of Lie-group
integrators [Soliman et al. 2024].

Let us provide some detail about the formulation of inertial
rotational terms in the backward-Euler objective Ψ. We follow
Ferguson et al. [2021], who express an explicit rotation update
�̃�𝑘 = 𝑅𝑘−1 + ℎ ¤𝑅𝑘−1, where ¤𝑅 stands for the rotation-matrix de-
rivative and ℎ is the time step. Ferguson et al. also add external
forces, but we prefer to exclude them here and add them instead to
potential-energy terms. With the explicit rotation update �̃�𝑘 and
inertia matrix 𝐽 as defined by Ferguson et al., each rotation compo-
nent of the state contributes to the backward-Euler objective Ψ an
inertial term:

Ψ𝑅 = − 1
ℎ2 tr

(
𝑅𝑘 𝐽 �̃�

𝑇
𝑘

)
. (9)

Note that we discard the constant term 1
2 tr

(
𝑅𝑘 𝐽 𝑅

𝑇
𝑘

)
, included

by Ferguson et al., as it does not contribute to the result of the
optimization. We also divide their objective by ℎ2 to retain the
physical meaning of energy.

Recall from Section 4.1 above that we time-discretize the simula-
tion using step and not velocities. Then, in contrast to Ferguson et
al., we rewrite the explicit rotation update as:

�̃�𝑘 =

(
2 𝐼 − Δ𝑅𝑇

𝑘−1

)
𝑅𝑘−1 . (10)

This expression highlights the dependency of the objective (7) wrt
the new state, the old state, and the old step.

4.3 Solution to the Nonlinear Equations
We use Newton’s method with line-search to optimize (7) and com-
pute the new state 𝑞𝑘 . For each Newton iteration, given a current
guess 𝑞∗

𝑘
, we compute a tentative update 𝛿𝑞𝑘 by solving:

𝜕2Ψ

𝜕𝑞𝑘
2 𝛿𝑞𝑘 +

𝜕Ψ

𝜕𝑞𝑘

𝑇

= 0. (11)

For rotational components of 𝑞𝑘 , we formulate the equation using
Lie derivatives. This implies (i) using Hessians of the form D2Ψ

D𝑅𝑘 2 ,
and (ii) parameterizing the iteration update 𝛿𝑅𝑘 as a rotation tangent-
space vector. Then, once (11) is solved, we can apply a line-search
weight 𝛼 on the tentative rotational update 𝛿𝑅𝑘 , and recompute the
rotation guess as 𝑅∗

𝑘
← exp(𝛼 𝛿𝑅𝑘 ) 𝑅∗𝑘 .

4.4 Comparison with Rotation Vectors
We argue that Lie derivatives (with their intrinsic tangent-space-
vector parameterization of rotations) provide much simpler and
better-conditioned derivatives of the incremental-potential objec-
tive (7) than rotation vectors. Next, we show this explicitly for the
rotational inertial term (9).
With Lie derivatives, we obtain the gradient DΨ𝑅

D𝑅𝑘 ≡
𝜕Ψ𝑅
𝜕𝜃𝑅𝑘

(resp.

the Hessian D
2Ψ𝑅
D𝑅𝑘 2 ≡ 𝜕2Ψ𝑅

𝜕𝜃𝑅𝑘
2 ) using regular differentiation rules and

a first-order (resp. second-order) approximation of exp(𝜃𝑅𝑘 → 0).
Please see Appendix A for details of the derivation.

DΨ𝑅
D𝑅𝑘

≡ 𝜕Ψ𝑅
𝜕𝜃𝑅𝑘

= 2 skew−1 (𝐴𝑅)𝑇 , (12)

D2Ψ𝑅
D𝑅𝑘 2 ≡

𝜕2Ψ𝑅
𝜕𝜃𝑅𝑘

2 = tr(𝑆𝑅) 𝐼 − 𝑆𝑅, (13)
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Fig. 4. Comparison of a rigid-body simulation with our rotation derivatives vs. rotation vectors. We simulate gravity-free dynamics of a butterfly bolt (left)
with initial velocity, and confirm that it satisfies the tennis-racket theorem with just one Newton iteration per simulation step, while a formulation based on
rotation vectors requires two Newton iterations. This result can be justified in two ways: (i: middle) our formulation achieves a larger reduction of the residual
of (8) in the first Newton iteration, and (ii: right) our formulation improves the condition number of the Hessian of (9).

where 1
ℎ2 𝑅𝑘 𝐽 �̃�

𝑇
𝑘

= 𝑆𝑅 + 𝐴𝑅 is a decomposition into symmetric
and antisymmetric matrices 𝑆𝑅 and 𝐴𝑅 , and skew−1 () is the in-
verse operation of skew() to extract a vector from an antisymmetric
matrix.
With rotation vectors 𝑟𝑘 , we have Ψ𝑅 = − 1

ℎ2 tr
(
exp(𝑟𝑘 ) 𝐽 �̃�𝑇𝑘

)
.

This expression can be differentiated by substituting the Rodrigues
rotation formula (4) and its derivative (5), and applying the robust
derivative of sinc() as proposed by Ferguson et al. However, the
derivatives suffer an explosion of complexity in contrast to (12)
and (13) above ( Please see Appendix B for details of the resulting
derivatives). Moreover, Ferguson et al. [2021] report the need for
stabilization because of the rotation-vector parameterization, which
may turn the Hessian of the inertial term indefinite. This has never
been a problem in practice with our Lie derivatives.
We have analyzed experimentally the positive impact of Lie

derivatives on forward simulation. Fig. 4-left shows a gravity-free
butterfly bolt which we simulate rigid-body dynamics with an initial
velocity. With Lie derivatives, the simulation satisfies the tennis
racket theorem (i.e., the rotation around the intermediate principal
axis of the inertia tensor is not stable) with just one Newton iteration
per step. With rotation vectors, on the other hand, the simulation
requires two Newton iterations. We have tested this same example
on the available implementation of rigid IPC [Ferguson et al. 2021].
The simulation suffers artifacts when the rotation approaches 2𝜋 ,
probably because of a Newton convergence problem reported in
their paper, which manifests only in this inertia-dominated scenario.
Please see the accompanying video for visual comparisons. Fig. 4-
middle compares the reduction in the residual of (8) after the first
Newton iteration, and Fig. 4-right compares the condition number
of the Hessian. We have observed that Lie derivatives contribute
a reduction in Newton iterations in situations where conditioning
is dominated by rotations, but not in others dominated by stretch
stiffness.

5 DIFFERENTIABLE SIMULATION
We turn our attention now to differentiable simulation, to discuss the
role of Lie derivatives in the computation of adjoints for rotational

components of the simulation. A differentiable simulation can be
regarded, in general terms, as an optimization problem with some
objective 𝑔({𝑞𝑘 }, 𝛾) and optimization parameters 𝛾 (e.g., control
parameters, material parameters, rest shape, etc). Each simulation
step update poses two sets of constraints on the optimization: (i)
the optimality condition of discrete forward dynamics (8), and (ii)
the computation of the step from old and new states. Let us write
the full optimization problem with explicit dependencies of state,
step and parameters:

𝛾 = arg min𝑔({𝑞𝑘 }, 𝛾), (14)

s. t. 𝜕Ψ(𝑞𝑘 , 𝑞𝑘−1,Δ𝑞𝑘−1, 𝛾)
𝜕𝑞𝑘

= 0, ∀𝑘 (15)

and Δ𝑞𝑘 = 𝑓 (𝑞𝑘 , 𝑞𝑘−1), ∀𝑘. (16)

Next, we discuss the differentiation of the step update (16), the
computation of state and step Jacobians wrt optimization parame-
ters, and the role of these Jacobians in the computation of adjoints.

5.1 Differentiation of the Step
The computation of the step (16) is simply Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 for
vector components of the state. Then, the Jacobians of the step
update are trivial: 𝜕𝑓

𝜕𝑥𝑘
= 𝐼 and 𝜕𝑓

𝜕𝑥𝑘−1
= −𝐼 .

For rotational components of the state, the step update is de-
fined as in (6). Using Lie derivatives, we obtain strikingly sim-
ple expressions (please see Appendix C): 𝜕𝑓

𝜕𝑅𝑘
≡ DΔ𝑅𝑘
D𝑅𝑘 = 𝐼 and

𝜕𝑓

𝜕𝑅𝑘−1
≡ DΔ𝑅𝑘
D𝑅𝑘−1

= −Δ𝑅𝑘 .
This result reveals the power of our choice of step as parameteri-

zation of the time-discretization of the simulation. As mentioned
in Section 4.1, a common alternative is to use velocity, e.g., an-
gular velocity 𝜔 for rotational components of state. This would
yield an update constraint of the form 𝑅𝑘 = exp(ℎ𝜔) 𝑅𝑘−1. Un-
fortunately, differentiating this constraint wrt the angular velocity
requires differentiating the Rodrigues rotation formula, which in-
creases complexity and weakens conditioning as discussed already
in Section 3.3. ADD [Geilinger et al. 2020] suffers a similar issue. The
Jacobian of rotation-vector time-derivative wrt angular velocity is
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commonplace in their formulation, and it largely complicates their
method.

5.2 Jacobians of the Simulation Constraints
By differentiating the dynamics and step constraints (15) and (16)
we obtain a linear relationship between the Jacobians of old and
new state and step wrt the optimization parameters. This linear
relationship is key for the recursive (backward) update of adjoints
for differentiable simulation. First, we apply the implicit function
theorem to (15), to obtain:
𝜕2Ψ

𝜕𝑞𝑘
2
𝜕𝑞𝑘

𝜕𝛾
= − 𝜕2Ψ

𝜕𝑞𝑘 𝜕𝑞𝑘−1

𝜕𝑞𝑘−1
𝜕𝛾
− 𝜕2Ψ
𝜕𝑞𝑘 𝜕Δ𝑞𝑘−1

𝜕Δ𝑞𝑘−1
𝜕𝛾

− 𝜕2Ψ
𝜕𝑞𝑘 𝜕𝛾

.

(17)
Then, we differentiate (16) wrt the optimization parameters and

substitute the result 𝜕𝑓
𝜕𝑞𝑘

= 𝐼 to obtain:

𝜕Δ𝑞𝑘
𝜕𝛾

=
𝜕𝑞𝑘

𝜕𝛾
+ 𝜕𝑓

𝜕𝑞𝑘−1

𝜕𝑞𝑘−1
𝜕𝛾

. (18)

In the expressions above, we use Lie derivatives whenever we
differentiate wrt rotational components of the state or step. Please
see Appendix A for the derivatives of the rotational inertial term (9).
Note that the step Jacobian 𝜕𝑓

𝜕𝑞𝑘−1
bears an interesting geometric

interpretation, which becomes apparent in the context of Lie deriva-
tives. It is responsible for transporting back-propagated gradients
across tangent spaces at different time steps. For vector quantities,
the tangent spaces match and this transport operation is trivial. For
rotations, however, Lie derivatives elicit the two tangent spaces
across which gradients are transported.

5.3 Adjoints and Objective Gradient
For completeness, we detail the computation of the objective gradi-
ent d𝑔

d𝛾 using the adjoint method recursively, although at this point
the formulation does not differ from others. Please see Appendix D
for the full derivation.
We define a state adjoint 𝑎𝑘 and a step adjoint Δ𝑎𝑘 , which are

initialized as 𝑎𝑛 =
𝜕𝑔
𝜕𝑞𝑛

and Δ𝑎𝑛 = 0, where 𝑛 is the last simulation
step.
State and step adjoints are updated recursively as:

𝑎𝑘−1 = 𝑧𝑘
𝜕2Ψ

𝜕𝑞𝑘 𝜕𝑞𝑘−1
+ Δ𝑎𝑘

𝜕𝑓

𝜕𝑞𝑘−1
+ 𝜕𝑔

𝜕𝑞𝑘−1
, (19)

Δ𝑎𝑘−1 = 𝑧𝑘
𝜕2Ψ

𝜕𝑞𝑘 𝜕Δ𝑞𝑘−1
, (20)

with 𝑧𝑘
𝜕2Ψ

𝜕𝑞𝑘
2 = −𝑎𝑘 − Δ𝑎𝑘 .

The objective gradient is computed as:
d𝑔
d𝛾 =

𝜕𝑔

𝜕𝛾
+

∑︁
𝑘

𝑧𝑘
𝜕2Ψ
𝜕𝑞𝑘 𝜕𝛾

. (21)

6 DERIVATIVES OF OTHER SIMULATION MODELS

6.1 Elasticity and Damping Potentials
In Section 4.2 we have paid attention to the inertial potential term
in the optimization formulation of rigid-body dynamics. But (7)

Fig. 5. We use our formulation to simulate the dynamics of Cosserat rods.
This figure shows a helical rod with 161 edges, discretized with rotations
at edge centers and positions at nodes. Top: The rod being pulled from the
sides. Bottom: The rod is straightened to remove its intrinsic twist and then
pulled-pushed. This results in helical perversion, as demonstrated by Bergou
et al. [2008] for Kirchhoff rods.

also requires other potentials, such as elastic energy, gravity, and
incremental-potential formulations of damping and friction. With-
out loss of generality, these potentials can be expressed as Ψ𝑝 (𝑝𝑘 =

𝑅𝑘 𝑝), i.e., some function dependent on point positions 𝑝𝑘 , which
are themselves the result of rotating undeformed point positions
𝑝 . Note that the incremental potentials of damping and friction
terms can also be written in this way, as velocities are defined by
finite-differencing positions, i.e., ¤𝑝𝑘 = 1

ℎ
(𝑝𝑘 − 𝑝𝑘−1) [Li et al. 2020].

Lie derivatives of elasticity and damping potential terms can
easily be generalized from regular gradient 𝜕Ψ𝑝𝜕𝑝 and Hessian 𝜕2Ψ𝑝

𝜕𝑝2

as follows:
DΨ𝑝

D𝑅𝑘
= −

𝜕Ψ𝑝

𝜕𝑝
skew(𝑝), (22)

D2Ψ𝑝

D𝑅𝑘 2 = 𝐷 + 𝐷𝑇 − skew(𝑝)
𝜕2Ψ𝑝
𝜕𝑝2 skew(𝑝), (23)

𝐷 =
1
2 skew(𝑝) skew

(
𝜕Ψ𝑝

𝜕𝑝

𝑇
)
.

We obtained these derivatives using the quadratic approximation of
exp(𝜃𝑅𝑘 → 0) 𝑅𝑘 𝑝 .

6.2 Cosserat Rods
Cosserat rods consider stretch, shear, bending, and twist deforma-
tions. This is in contrast to Kirchhoff rods, which only consider
bending and twist. With high stretch and shear stiffness, the re-
sulting behavior is practically the same. We use the Cosserat rod
model by Spillmann and Teschner [2007], as it employs a multi-
body discretization of rod kinematics, allowing direct application
of our Lie derivatives for rigid-body dynamics. Fig. 5 shows how
our Cosserat rod implementation reproduces the helical perversion
behavior demonstrated by Bergou et al. [2008] for Kirchhoff rods.
Rod kinematics are discretized with positions {𝑥𝑖 } sampled at

nodes and orientations {𝑅𝑖 } sampled at edge centers. All elastic
energies are defined in the continuum and integrated with quad-
rature. The discrete stretch energy penalizes edge stretch as Ψ𝑠 =∑
𝑖

1
2 𝑘𝑠 𝑙

(
1 − ∥𝑥𝑖+1−𝑥𝑖 ∥

𝑙

)2
, with 𝑙 the edge rest-length.
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Fig. 6. This demo replicates an example simulated by Ferguson et al. [2021],
using our approach, and it demonstrates the ability to handle intricate
frictional contact.

The discrete shear energy penalizes the deviation between edge di-
rectors and the Z axis of the orientation asΨ𝑥 =

∑
𝑖

1
2 𝑘𝑥 𝑙

(
1 − 𝑑𝑇

𝑖
𝑅𝑖 𝑒𝑧

)
,

with 𝑑𝑖 = 𝑥𝑖+1−𝑥𝑖
∥𝑥𝑖+1−𝑥𝑖 ∥ the edge director and 𝑒𝑧 the unit vector on the Z

axis. The combined bending and twist energy isΨ𝑏 =
∑
𝑖

1
2 𝑙 Δ𝜔

𝑇
𝑖
𝐾𝑏 Δ𝜔𝑖 ,

with Δ𝜔𝑖 the difference between the deformed 𝜔𝑖 and rest �̄�𝑖 Dar-
boux vectors. The Darboux vector measures the spatial derivative
of the rod’s orientation as 𝑅′

𝑖
= 𝑅𝑖 skew(𝜔𝑖 ), and is evaluated at

nodes with 𝑅𝑖 = 1
2 (𝑅𝑖 + 𝑅𝑖−1) the average edge orientation and

𝑅′
𝑖
= 1
𝑙
(𝑅𝑖 − 𝑅𝑖−1) the spatial derivative of the rotation matrix. We

use the same notation 𝜔 for the Darboux vector and the angular
velocity as they represent the same concept, albeit in the spatial and
temporal domains. 𝐾𝑏 is a diagonal stiffness matrix that captures
anisotropic bending stiffness and twist stiffness. For inertia, we use
a lumped linear inertia (mass) at nodes, and a lumped rotational
inertia at edges.
The gradients and Hessians of shear, bending and twist ener-

gies rely on Lie derivatives. For convenience, we rewrite as Ψ𝑏 =∑
𝑖

1
2 𝑙 tr

(
skew(Δ𝜔𝑖 ) (𝐾𝑏 − 1

2 tr(𝐾𝑏 ) 𝐼 ) skew(Δ𝜔𝑖 )
)
the bending and

twist energy, and then we can simply substitute skew(𝜔𝑖 ) = 𝑅𝑇𝑖 𝑅
′
𝑖
.

Derivatives follow via the chain rule and linear (for the gradient)
and quadratic (for the Hessian) approximations of exp(𝜃𝑅 → 0) 𝑅,
as used throughout the paper.

7 RESULTS
In this section, we report results and comparisons of both forward
and differentiable simulations. We have validated all Lie derivatives
using finite differences, and we have confirmed that, in differen-
tiable simulations, we obtain the same objective gradients (up to
numerical precision) with our Lie derivatives, with rotation vectors,
and with finite differences. We have used TinyAD [Schmidt et al.
2022] for automatic differentiation wrt rotation vectors, except for
the butterfly bolt in Fig. 4, which only has the inertial energy term
and we have programmed its analytical gradient and Hessian. We

Fig. 7. We simulate a colonoscopy using a Cosserat rod model for the
endoscope. Insertion forces are applied at the rectum, and the endoscope
advances and deforms due to contact with the colon. We achieve a total
speed-up of 4.4× vs. a simulation using rotation vectors. For rendering, we
cull the front faces of the colon to highlight the motion of the endoscope.

have used the ScyPy implementation of L-BFGS for all our optimiza-
tion examples of differentiable simulation (with gradients computed
in our C++ simulator). All our examples have been executed on an
AMD Ryzen 7 6800HS CPU with 8 cores, although our prototype
implementation is single-threaded.

7.1 Simulation of Rigid Dynamics
We have validated our formulation on forward simulation of fric-
tional rigid-body contact. Fig. 6 shows an example that replicates
a benchmark by Ferguson et al. [2021]. Our Lie derivatives handle
all potential terms (inertial, elastic and damping/friction) without
problem. Our simulation runs 10× faster than the results reported by
Ferguson et al., but note that, unlike them, we used quadratic contact
potentials based on signed distance fields, not barrier potentials. Our
approach can support CCD just as in rigid IPC, using the rotation
guess resulting from line-search as described in Section 4.3. But we
opted for quadratic potentials over CCD with barrier potentials for
ease of implementation.

7.2 Simulation of Cosserat Rod Dynamics
In addition to the helical rod shown in Fig. 5, we demonstrate a
colonoscopy simulation in Fig. 7. The characteristics of the endo-
scope are well captured by a rod model, as the deformation of the
cross-section is negligible. The colon model was produced by ex-
tracting the colon geometry from medical images (with permission,
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Table 1. Complexity (number of degrees of freedom #𝑞, time step ℎ, and number of simulation frames 𝑛) and performance comparisons (average assembly
and solve time per Newton iteration, and total simulation time) of our forward simulation examples.

Complexity Assembly/iter (𝜇s) Solve/iter (𝜇s) Total sim (s)
Example #𝑞 ℎ 𝑛 rot. vec. ours rot. vec. ours rot. vec. ours
Helical perversion (Fig. 5) 969 0.01 1000 2 910 608 195 191 81 13
Colonoscopy (Fig. 7) 969 0.001 2000 2 970 671 753 464 31.1 7.2

but details hidden for anonymity). For contact detection, we sam-
ple points along the endoscope’s center line, and we use a signed
distance field for the colon. We insert the endoscope by applying
forces at the rod nodes that fall inside the rectum; no external forces
are applied at the tip or elsewhere in the rod.

Table 1 compares the performance of the helical-rod and colonoscopy
examples using our formulation vs. rotation vectors. In both cases,
the simulation cost is dominated by the gradient and Hessian as-
sembly. The system-solve cost is lower thanks to the narrow-band
shape of the system matrix. We achieve speed-ups of 4.4 − 4.8× in
the average cost of assembly per Newton iteration, and 4.3 − 6.2×
in the total simulation cost. The performance penalty of rotation
vectors may be the result of three main factors: (i) more Newton
iterations, (ii) the use of automatic differentiation, (iii) the intrinsic
complexity of derivative expressions. To understand the effect of
this last factor, we have measured the assembly cost on the butterfly
bolt of Fig. 4 with analytical derivatives. Rotation derivatives are
2.17× slower per assembly: 505 ns vs 233 ns.

7.3 Control of Frictional Rigid Dynamics
We have developed an example of differentiable frictional rigid
dynamics to validate our Lie derivatives within the adjoint method.
Fig. 8 shows the resulting animation where we control the initial
angular velocity of a die, and we optimize its target orientation
and height at the final frame. The optimization converges in just 12
iterations and 565 ms.

7.4 Control of Cosserat Rod Animations
Using Cosserat rods as use-case of multi-rigid-body dynamics, we
have validated the generality of our solution on diverse types of
optimization problems. Specifically, we have validated the optimiza-
tion of initial conditions, control forces, and rest shape. While the
overall formulation of the adjoint method (Section 5.3) is the same

Fig. 8. We throw a die and we optimize its initial angular velocity such that
it rolls a 6 and the 5 faces the camera. We express this through objective
terms on the orientation and the height at the final frame. The images show
some frames along the resulting animation, which was optimized in just 12
iterations and 565 ms.

in all cases, they differ in the Jacobian of forces wrt optimization pa-
rameters 𝜕2Ψ

𝜕𝑞𝑘 𝜕𝛾
in the gradient sum (21). Table 2 lists the simulation

settings of all our examples involving Cosserat rods.

Optimization of Initial Conditions. This is the easiest case from
an implementation perspective, as 𝜕2Ψ

𝜕𝑞𝑘 𝜕𝛾
only contributes to the

gradient in the first frame. However, it obviously affects the complete
trajectory through the recursive contribution of adjoints to 𝑧𝑘 .

Fig. 1 shows our benchmark for validation of the optimization of
initial conditions. Given straight undeformed rods, we optimize their
initial velocities (i.e., the linear velocity of every rod node), such
that the rods spell the word SIGGRAPH at the end of the animation.
We express the objective (loss) as the 𝐿2 norm of node distances
to the target shape, normalized based on the distance of the initial
shape.

Fig. 9 compares the convergence rate for the optimization of each
letter in the animation. We stop each letter’s optimization when the
normalized loss reaches 10−3 or at 100 iterations. Note that there is
no convergence difference between our formulation and rotation
vectors, because the objective gradients match up to numerical
precision. However, with our formulation the optimization was
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Fig. 9. Convergence rate for the optimization of each letter in the "SIG-
GRAPH" animation shown in Fig. 1. The objective (loss) is expressed as the
𝐿2 norm of node distances to the target shape, and is normalized based on
the distance of the initial shape. There is no convergence difference between
our formulation and rotation vectors, but we obtain a total speed-up of
4.8×.
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Table 2. Settings used in the Cosserat rod examples: mass𝑚, stretch stiff-
ness𝑘𝑠 , bending stiffness𝐾𝑏1, twist stiffness𝐾𝑏2, shear stiffness𝑘𝑥 , number
of rigid bodies 𝑁 and time step ℎ.

Example 𝑚 (Kg) 𝑘𝑠 𝐾𝑏1 𝐾𝑏2 𝑘𝑥 𝑁 ℎ (ms)
Fig. 5 0.3 2e3 10 25 2e3 162 1
Fig. 7 1.0 5e3 2e3 2e3 1e2 160 0.1
Fig. 10 0.15 5e2 1 1 50 15 10
Fig. 1 0.5 - 0.8 4e2 1e2 1e2 1e2 33 - 85 10

4.8× faster thanks to the speed-up in the forward solves. Table 3
compares the simulation and optimization complexity of each letter,
as well as the total optimization time, both with our formulation
and with rotation vectors.

Optimization of Control Forces. Given a rod model, we install
pulling cables along its sides. Specifically, for the examples shown in
Fig. 10, we add 8 cables, each of half-length of the rod, and positioned
at 90 degrees on the circumference of the rod’s cross-section. Please
watch the accompanying video for an illustration of the cables and
their forces. Using these cables, we can control the trajectory of the
tip of the rod.
Specifically, in the examples in Fig. 10 we optimize the ortho-

graphic projection of the trajectory of the tip, such that it matches
a given curve. The video shows the convergence and success of
the optimization. Similar to all other differentiable simulation ex-
amples, we obtain a speed-up wrt rotation vectors thanks to the
higher performance of the forward solve, which is the bottleneck.
For differentiability, the major direct impact is implementation ease
thanks to simplified derivatives.

Optimization of Rest Shape. Finally, we have demonstrated differ-
entiable simulation wrt rest shape, in the example shown in Fig. 10.
In this example, we also optimize the trajectory of the tip to follow a
given curve. But unlike the previous example, we control the intrin-
sic Darboux frame of the rod at each discretization edge and frame.
Note that we solve a global optimization problem, not independent
problems per frame. By doing this, the inertial term of dynamics
acts as a regularizer that naturally leads to a smooth animation.

Table 3. Complexity (number of degrees of freedom #𝑞 and optimization
parameters #𝛾 ) and performance (number of iterations 𝑁 to reach a nor-
malized error of 10−3, but clamped at 100, and total optimization time in
seconds) for each letter in the "SIGGRAPH" animation shown in Fig. 1. The
table compares optimization performance of our formulation vs. rotation
vectors.

Time (s) Time (s)
Letter #𝑞 #𝛾 𝑁 rot. vec. ours
S 363 183 28 26.6 5.6
I 99 51 10 1.8 0.5
G 387 195 34 37.7 7.5
R 411 207 39 44.1 9.1
A 291 147 100 75.2 16.1
P 513 258 100 152.2 32.0
H 363 183 55 49.0 10.5

Fig. 10. We optimize the trajectory of the tip of the rod by controlling the
forces of pulling cables. The figures show two different trajectories. Please
watch the progress of the optimization and the resulting dynamic cable
forces in the accompanying video.

8 DISCUSSION AND FUTURE WORK
In this paper, we have presented novel formulations of forward
and differentiable rigid-body dynamics, which leverage Lie theory
for exact, compact, analytical, well-conditioned and efficient differ-
entiation of and wrt rotations. Our work is in line with Lie-group
integrators, but differs from previous work in its focus on implicit in-
tegration, and the derivation of adjoints by differentiating a rotation
version of the step-update constraint. These contributions make
forward and differentiable rigid dynamics easier to implement and
more efficient. Efficiency of (differentiable) multi-body dynamics is
of high importance, as it is a central ingredient of simulation-based
learning for robotics [Xu et al. 2022].

We would like to point out two possible limitations of Lie deriva-
tives. First, in our formulation we only needed derivatives of rota-
tions up to first order, and we have seen that all cases were easy
to handle via cancellation of exponential and log maps (See Ap-
pendix C). Of course we have used second derivatives (Hessians)
with respect to rotations, but for functions in Euclidean space, not
for rotation functions. Higher-order derivatives of rotations may
require additional complexity.

Fig. 11. In this example, we control the rest shape of the rod through its
intrinsic Darboux frame, and we optimize the trajectory of the tip to follow
a given curve.
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Second, off-the-shelf tools for automatic differentiation and nu-
merical optimization do not support Lie derivatives of rotations, as
they rely on Euclidean-space differentiation rules. Note that auto-
matic differentiation of vector functions wrt rotations is possible
(and we have used it), by first substituting the necessary approx-
imation of the exponential map. We have shown throughout the
paper that Lie derivatives are simple, and we have also shown in
Section 4.3 that Newton-like optimization methods can easily be
applied to rotations. Off-the-shelf optimization tools could be ex-
tended to consider the semantics of independent and dependent
variables, and apply Lie derivatives accordingly.

While not directly a limitation of our method, we have observed
that optimizations of contact problems may converge to local min-
ima, far from the global minimum. The main reason is the disconti-
nuity of contact, which unsurprisingly breaks the assumptions of
gradient-based optimization. The use of “leaky gradients” [Turpin
et al. 2022] as a way to smooth the objective function could alleviate
the problem.
In the paper we have shown the application of our methodol-

ogy to rigid-body and Cosserat rod dynamics. However, it could be
extended to other simulation methods whose kinematic represen-
tations rely on rigid transformations. Some tentative use cases are
frame-based elasticity models [Gilles et al. 2011], rotation-strain co-
ordinates [Pan et al. 2015], reduced models based on frames [Brandt
et al. 2018], or biharmonic coordinates with frame handles [Wang
et al. 2015].

As a final remark, we would like to mention an approach different
from ours for dealing with the challenges of rotations, which is to
formulate rigid-body motion as an affine transformation coupled
with a rigidity penalty energy [Lan et al. 2022]. This approach avoids
altogether the representation of rotations, at the price of stiffening
the simulation problem. It is worth comparing both approaches in
terms of convergence, cost, and implementation effort.
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A LIE DERIVATIVES OF THE INERTIAL POTENTIAL
We use several general properties of the trace. Let us consider 3D
matrices 𝑈 ,𝑉 , a 3D symmetric matrix 𝑆 = 𝑆𝑇 , a 3D antisymmetric
matrix 𝐴 = −𝐴𝑇 , and 3D vectors 𝑢, 𝑣 :

tr(𝑈 𝑉 ) = tr(𝑉 𝑈 ) . (24)
tr(𝑆 𝐴) = 0. (25)

tr(skew(𝑢)𝑈 skew(𝑣)) = 𝑣𝑇 (𝑈 − tr(𝑈 ) 𝐼 ) 𝑢. (26)

To compute the gradient of Ψ𝑅 (9) it suffices to use the linear term
of the exponential map. Then, we have:

DΨ𝑅
D𝑅𝑘

≡
𝜕Ψ𝑅 (exp(𝜃𝑅𝑘 ) 𝑅𝑘 )

𝜕𝜃𝑅𝑘
=
𝜕Ψ𝑅 (skew(𝜃𝑅𝑘 ) 𝑅𝑘 )

𝜕𝜃𝑅𝑘
. (27)

If we decompose 1
ℎ2 𝑅𝑘 𝐽 �̃�

𝑇
𝑘
= 𝑀𝑅 = 𝑆𝑅 +𝐴𝑅 into symmetric and

antisymmetric matrices 𝑆𝑅 and 𝐴𝑅 , we can rewrite the gradient as:

DΨ𝑅
D𝑅𝑘

=
𝜕
(
−tr

(
skew(𝜃𝑅𝑘 )𝑀𝑅

) )
𝜕𝜃𝑅𝑘

=
𝜕
(
−tr

(
skew(𝜃𝑅𝑘 )𝐴𝑅

) )
𝜕𝜃𝑅𝑘

. (28)

And by (26), we have:

DΨ𝑅
D𝑅𝑘

=

𝜕

(
2𝜃𝑇
𝑅𝑘

skew−1 (𝐴𝑅)
)

𝜕𝜃𝑅𝑘
= 2 skew−1 (𝐴𝑅)𝑇 . (29)

To compute the Hessian of Ψ𝑅 it suffices to use the quadratic term
of the exponential map. Then, we have:

D2Ψ𝑅
D𝑅𝑘 2 ≡

𝜕2Ψ𝑅 (exp(𝜃𝑅𝑘 ) 𝑅𝑘 )
𝜕𝜃𝑅𝑘

2 =
𝜕2Ψ𝑅 ( 12 skew2 (𝜃𝑅𝑘 ) 𝑅𝑘 )

𝜕𝜃𝑅𝑘
2 . (30)

With the decomposition into 𝑆𝑅 and 𝐴𝑅 , and since skew2 () is
symmetric, we obtain:

D2Ψ𝑅
D𝑅𝑘 2 =

𝜕2
(
−tr

(
1
2 skew2 (𝜃𝑅𝑘 ) 𝑆𝑅

))
𝜕𝜃𝑅𝑘

2 . (31)

And by (26), we have:

D2Ψ𝑅
D𝑅𝑘 2 =

𝜕2
(

1
2 𝜃

𝑇
𝑅𝑘
(tr(𝑆𝑅) 𝐼 − 𝑆𝑅) 𝜃𝑅𝑘

)
𝜕𝜃𝑅𝑘

2 = tr(𝑆𝑅) 𝐼 − 𝑆𝑅 . (32)

Differentiable simulation also requiresmixedHessians D2Ψ𝑅
D𝑅𝑘 D𝑅𝑘−1

and D2Ψ𝑅
D𝑅𝑘 DΔ𝑅𝑘−1

. To derive these Hessians, it suffices to use the lin-
ear terms of exponential maps exp(𝜃𝑅𝑘 ), exp(𝜃𝑅𝑘−1 ) and exp(𝜃𝑅Δ𝑘−1 ).
Substituting the expression for �̃�𝑘 inΨ𝑅 , with𝑀Δ = 1

ℎ2 𝑅𝑘 𝐽 𝑅
𝑇
𝑘−1 Δ𝑅𝑘−1,

and applying the properties (24)-(26) similarly as before, we reach:

D2Ψ𝑅
D𝑅𝑘 D𝑅𝑘−1

= 𝑀𝑇𝑅 − tr(𝑀𝑅) 𝐼 +
(
𝑀𝑇Δ − tr(𝑀Δ)

) (
𝐼 − Δ𝑅𝑇

𝑘−1

)
.

(33)
D2Ψ𝑅

D𝑅𝑘 DΔ𝑅𝑘−1
=

(
𝑀𝑇Δ − tr(𝑀Δ) 𝐼

)
Δ𝑅𝑇

𝑘−1 . (34)

B ROTATION-VECTOR DERIVATIVES OF THE INERTIAL
POTENTIAL

We substitute the Rodrigues formula of the exponential map exp(𝑟𝑘 )
(4) into the expression of Ψ𝑅 (9). As we are interested in the gradient
and the Hessian, we drop the constant term wrt 𝑟𝑘 . We define𝑀𝑟 =
1
ℎ2 𝐽 �̃�

𝑇
𝑘
and write the revised inertial objective as:

Ψ𝑅 = −𝜎 (𝑟𝑘 ) tr (skew(𝑟𝑘 )𝑀𝑟 ) −
1
2 𝜎

2
( 𝑟𝑘

2

)
tr

(
skew(𝑟𝑘 )2 𝑀𝑟

)
.

(35)
With a decomposition into symmetric and antisymmetric matri-

ces 𝑀𝑟 = 𝑆𝑟 + 𝐴𝑟 , and using properties of the trace (24)-(26), we
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rewrite the objective as:

Ψ𝑅 = 2𝜎 (𝑟𝑘 ) skew−1 (𝐴𝑟 )𝑇 𝑟𝑘 +
1
2 𝜎

2
( 𝑟𝑘

2

)
𝑟𝑇
𝑘
(tr(𝑆𝑟 ) 𝐼 − 𝑆𝑟 ) 𝑟𝑘 .

(36)
We can now derive the gradient:
𝜕Ψ𝑅
𝜕𝑟𝑘

= 2 skew−1 (𝐴𝑟 )𝑇 𝑟𝑘 𝜎′ (𝑟𝑘 )
𝑟𝑘

∥𝑟𝑘 ∥
+ 2𝜎 (𝑟𝑘 ) skew−1 (𝐴𝑟 )𝑇

+ 1
2 𝑟

𝑇
𝑘
(tr(𝑆𝑟 ) 𝐼 − 𝑆𝑟 ) 𝑟𝑘 𝜎

( 𝑟𝑘
2

)
𝜎′

( 𝑟𝑘
2

) 𝑟

∥𝑟 ∥

+ 𝜎2
( 𝑟𝑘

2

)
𝑟𝑇
𝑘
(tr(𝑆𝑟 ) 𝐼 − 𝑆𝑟 ) . (37)

This expression evidences the complexity of the rotation-vector
parameterization, which is further exacerbated for the Hessian.

C LIE DERIVATIVES OF THE STEP UPDATE
We use some general properties of the exponential map. Let us
consider a 3D vector 𝜃 and a 3D rotation matrix 𝑅:

exp(𝜃 )𝑇 = exp(−𝜃 ) . (38)
𝑅 exp(𝜃 ) = exp(𝑅 𝜃 ) 𝑅. (39)

To differentiate the step update (6), we apply the general expres-
sion of Lie derivatives where both the independent and dependent
variables are rotations:

DΔ𝑅𝑘
D𝑅𝑘

≡
𝜕log

(
exp(𝜃𝑅𝑘 ) Δ𝑅𝑘 Δ𝑅𝑇𝑘

)
𝜕𝜃𝑅𝑘

=
𝜕𝜃𝑅𝑘

𝜕𝜃𝑅𝑘
= 𝐼 . (40)

DΔ𝑅𝑘
D𝑅𝑘−1

≡
𝜕log

(
Δ𝑅𝑘 exp(𝜃𝑅𝑘−1 )𝑇 Δ𝑅𝑇

𝑘

)
𝜕𝜃𝑅𝑘−1

=
𝜕
(
−Δ𝑅𝑘𝜃𝑅𝑘−1

)
𝜕𝜃𝑅𝑘−1

= −Δ𝑅𝑘 .

(41)

D ADJOINT METHOD FOR DIFFERENTIABLE
SIMULATION

Let us gather the state 𝑞𝑘 and step Δ𝑞𝑘 in a single vector 𝑦𝑘 =(
𝑞𝑘
Δ𝑞𝑘

)
, and the full-simulation state and step in a large vector 𝑦.

With this notation, the gradient of the objective (14) is expressed as:
d𝑔
d𝛾 =

𝜕𝑔

𝜕𝛾
+

∑︁
𝑘

𝜕𝑔

𝜕𝑦𝑘

𝜕𝑦𝑘

𝜕𝛾
=
𝜕𝑔

𝜕𝛾
+ 𝜕𝑔
𝜕𝑦

𝜕𝑦

𝜕𝛾
. (42)

The Jacobians of the dynamics and step constraints (17) and (18)
can be rewritten in matrix form as:

𝜕𝑦𝑘

𝜕𝛾
+𝑀𝑘

𝜕𝑦𝑘−1
𝜕𝛾

= 𝑏𝑘 , with 𝑏𝑘 =
©«
− 𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕𝛾

− 𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕𝛾

ª®¬ , (43)

𝑀𝑘 =
©«

𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕𝑞𝑘−1

𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕Δ𝑞𝑘−1

𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕𝑞𝑘−1

− 𝜕𝑓
𝜕𝑞𝑘−1

𝜕2Ψ
𝜕𝑞𝑘

2
−1

𝜕2Ψ
𝜕𝑞𝑘 𝜕Δ𝑞𝑘−1

ª®¬ ,
which can be gathered in a full-simulation notation as:

𝑀
𝜕𝑦

𝜕𝛾
= 𝑏, with𝑀 =

©«
. . .

. . . 𝑀𝑘−1 𝐼 0 . . .

. . . 0 𝑀𝑘 𝐼 . . .

. . .

ª®®®¬ . (44)

With the adjoint method, the gradient
d𝑔
d𝛾 =

𝜕𝑔

𝜕𝛾
+ 𝜕𝑔
𝜕𝑦

𝜕𝑦

𝜕𝛾
, with𝑀 𝜕𝑦

𝜕𝛾
= 𝑏, (45)

is computed instead as
d𝑔
d𝛾 =

𝜕𝑔

𝜕𝛾
+𝑤 𝑏, with𝑤 𝑀 =

𝜕𝑔

𝜕𝑦
. (46)

It is trivial to see that𝑤 𝑏 =
𝜕𝑔
𝜕𝑦

𝜕𝑦
𝜕𝛾 =

𝜕𝑔
𝜕𝑦 𝑀

−1 𝑏.
The adjoint formulation allows a recursive (backward) update of

adjoint terms:
𝑤𝑘−1 = −𝑤𝑘 𝑀𝑘 +

𝜕𝑔

𝜕𝑦𝑘−1
. (47)

This backward approach solving for𝑤 requires one linear-system
solve per step, while a forward approach of solving for 𝜕𝑦𝜕𝑝 requires
as many linear-system solves per step as the size of 𝑝 .
To conclude, we split the adjoint 𝑤𝑘 = (𝑎𝑘 ,Δ𝑎𝑘 ) into a state

adjoint 𝑎𝑘 and a step adjoint Δ𝑎𝑘 . The adjoint update (47) can then
be rewritten separately for the state adjoint and the step adjoint as
shown in (19) and (20). Finally, the computation of the gradient (46)
can be rewritten as shown in (21).
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